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Abstract. We study the speed of convergence to approximately optitassin two classes of potential games. We provide bountisrims
of the number ofounds where a round consists of a sequence of movements, withpdagér appearing at least once in each round. We model the
sequential interaction between players Hyeat-response walk the state graph, where every transition in the walk cpoeds to a best response
of a player. Our goal is to bound the social value of the statése end of such walks. In this paper, we focus on two clasfpstential games:
selfish routing games, and cut games (or party affiliationega¥)).

Despite the recent progress for bounding the price of agastiselfish routing games [19, 1, 5], many intriguing question the speed of
convergence are still open. Itis known that exponentialhglbest-response walks may exist to pure Nash equilibliafid random best-response
walks converge to solutions with good approximation gutes after polynomially many best responses [11]. In thiepave study the speed
of convergence on deterministic best-response walks Betames and prove that starting from an arbitrary configuaraafter one round of best
responses of players, the resulting configuration@(a)-approximate solution. Furthermore, we show that starftiagn an empty configuration,
the solution after any round of best responses is a confgtaiat- approximation. We also provide a lower bound for thdtiRmound case, where
we show that for any constant number of roungéhe approximation guarantee cannot be better tfah, for somee(t) > 0.

We also studycut gamesthat provide an illustrative example of potential game&e Tonvergence of potential games to locally optimum
solutions has been studied in the context of local seardaritigns [13, 22]. In this games, we consider two social fiomst: thecut (defined as
the weight of the edges in the cut), and tb&al happinesgdefined as the weight of the edges in the cut, minus the wefght remaining edges).
For the cut social function, we prove that the expected twalae after one round of a random best-response walk isaat & constant factor
approximation to the optimal social value. We also exhippanentially long best-response walks with poor sociali@al For the unweighted
version of this cut game, we pro¥&(/n) andO(n) lower and upper bounds on the number of rounds of best respdagonverge to a constant-
factor cut. In addition, we suggest a way to modify the gamentiorce a fast convergence in any fair best-response walkthE total happiness
social function, we show that for unweighted graphs of sieffity large girth, starting from a random configuratioreeply behavior of players in
a random order converges to an approximate solution aferamd.

1. Introduction. The main tool for analyzing the performance of systems whelfish players interact without
central coordination, is the notion of thgice of anarchyin a game [16]; this is the worst case ratio between an
optimal social solution and a Nash equilibrium. Intuitiyed high price of anarchy indicates that the system under
consideration requires central regulation to achieve gmstbrmance. On the other hand, a low price of anarchy does
not necessarily imply high performance of the system. Onia me@son for this phenomenon is that in many games,
the repeated selfish behavior of players may not lead to a Blasitibrium. Moreover, even if the selfish behavior
of players converges to a Nash equilibrium, tage of convergence might be very slow. Thus, from a practical and
computational viewpoint, it is important to evaluate thieraf convergence to approximate solutions.

By modeling the repeated selfish behavior of the players aq@emnce of atomic improvements, the resulting con-
vergence question is related to the running time of localbeglgorithms. In fact, the theory of PLS-completenes} [22
and the existence of exponentially long walks in many logdinization problems such as Max-2SAT and Max-Cut,
indicate that in many of these settings, we cannot hope faslynpmial-time convergence to a Nash equilibrium.
Therefore, for such games, it is not sufficient to just study value of the social function at Nash equilibria. To
deal with this issue, we need to bound the social value ofedesty profile aftepolynomially manybest-response
improvements by players.

Potential gameare games in which any sequence of improvements by playevenges to a pure Nash equilib-
rium. Equivalently, in potential games, there is no cyclestict improvements of players. This is equivalent to the
existence of a potential function that is strictly increasafter any strict improvement. In this paper, we study the
speed of convergence to approximate solutions in two dasfgeotential games: selfish routing games (or congestion
games) and cut games.
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Related Work..This work is motivated by the negative results of the congrog in congestion games [7], and
the study of convergence to approximate solutions gamesifiil4 Fabrikant, Papadimitriou, and Talwar [7] show
that for general congestion and asymmetric selfish routarges, the problem of finding a pure Nash equilibrium is
PLS-complete. This implies exponentially long walks to iiftia for these games. Our model is based on the model
introduced by Mirrokni and Vetta [14] who addressed the esgence to approximate solutions in basic-utility and
valid-utility games. They prove that starting from any staine round of selfish behavior of players converges to a
1/3-approximate solution in basic-utility games. Goemangrdkini, and Vetta [11] study a new equilibrium concept
(i.e. sink equilibria) inspired from convergence on bestponse walks and proved fast convergence to approximate
solutions on random best-response walks in (weighted) &stign games. In particular, their result on the price of
sinking of the congestion games implies polynomial congaog to constant-factor solutions on random best-response
walks in selfish routing games with linear latency functiofither related papers studied convergence for different
classes of games such as load balancing games [6], markitgsgames [10], and distributed caching games [8].

A main subclass of potential games is the classoofgestion gameaatroduced by Rosenthal [18]. Monderer and
Shapley [15] proved that congestion games are equivalghttolass oexact potential gamedn an exact potential
game, the increase in the payoff of a player is equal to thre&se in the potential function. Both selfish routing games
and cut games are a subclass of exact potential games, vaksily, congestion games. Tight bounds for the price of
anarchy is known for both of these games in different seit[d§, 1, 5, 4]. Despite all the recent progress in bounding
the price of anarchy in these games, many problems aboypéeel ©f convergence to approximate solutions for them
are still open.

Two main known results for the convergence of selfish rougismes are the existence of exponentially long best-
response walks to equilibria [7] and fast convergence tatamt-factor solutions on random best-response walks [11]
To the best of our knowledge, no results are known for thedspéeonvergence to approximate solutions on deter-
ministic best-response walks in the general selfish rogarmge. Preliminary results of this type in some special load
balancing games are due to Suri, Téth and Zhou [20, 21]. &udts for general selfish routing games generalize their
results.

The Max-Cut problem has been studied extensively [12], emethe local search setting. It is well known
that finding a local optimum for Max-Cut is PLS-complete [22], and there are some configurations from which
walks to a local optimum are exponentially long. In the pesiside, Poljak [17] proved that for cubic graphs the
convergence to a local optimum requires at n@gt?) steps. The total happiness social function is consideréugin
context of correlation clustering [2], and is similar to toéal agreement minus disagreement in that context. The bes
approximation algorithm known for this problem give®@élog n)-approximation [3], and is based on a semidefinite
relaxation.

Our Contribution.. Our work deviates from bounding the distance to a Nash dxiiiln [22, 7], and focuses
in studying the rate of convergence to an approximate swJti4, 11]. We consider two types of walks of best
responses: random walks and deterministic fair walks. @daen walks, we choose a random player at each step. On
deterministic fair walks, the time complexity of a game isasigred in terms of the numberwiunds where a round
consists of a sequence of movements, with each player dpgedileast once in each round.

First, we give tight bounds for the approximation factoria# solution after one round of best responses of players
in selfish routing games. In particular, we prove that sigrfrom an arbitrary state, the approximation factor after
one round of best responses of players is at ragst) of the optimum and this is tight up to a constant factor. We
extend the lower bound for the case of multiple rounds, wha&rehow that for any constant number of roundde
approximation guarantee cannot be better thiai, for somee(t) > 0. On the other hand, we show that starting from
an empty state, the state resulting after one round of bggbrses is a constant-factor approximation.

We also study the convergencednt gamesthat are motivated by thgarty affiliation gamg7], and are closely
related to the local search algorithm for the Max-Cut probJ22]. In the party affiliation game, each player’s strategy
is to choose one of two parties, i€, € {1, —1} and the payoff of playei for the strategy profilés;, so, ..., s,) is
Zj sjsiw;j. The weight of an edge corresponds to the levelishgreemendf the endpoints of that edge. This game
models the clustering of a society into two parties that minées the disagreement within each party, or maximizes
the disagreement between different parties. Such prohidemsa key role in the study of social networks.

We can model the party affiliation game as the following cuhgaeach vertex of a graph is a player, with payoff
its contribution in the cut (i.e. the total weight of its aciat edges that have endpoints in different parts of the ttut)
follows that a player moves if he can improve his contribaiiothe cut, or equivalently, he can improve the value of
the cut. The pure Nash equilibria exist in this game, andsselfehavior of players converges to a Nash equilibrium.
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We consider two social functions: the cut and the total haggs, defined as the value of the cut minus the weight
of the rest of edges. First, we profast convergence on random wallkdore precisely, we prove that selfish behavior
of players in a round in which the ordering of the player iskpit uniformly at random, results in a cut that is a
%-approximation in expectation. We complement our positegults by examples that exhilgibor deterministic
convergenceThat is, we show the existence of fair walks witkponentialength, that result in a poor social value.
We also model the selfish behaviorrofldly greedyplayers that move if their payoff increases by at least aofaat
1 + . We prove that in contrast to the case of (totally) greedyeais, mildly greedy players converge to a constant-
factor cut after one round, under any ordering. For unweidlgtraphs, we give ad(,/n) lower bound and a®(n)
upper bound for the number of rounds required in the worst tasonverge to a constant-factor cut.

Finally, for the total happiness social function, we shoat ttor unweighted graphs of large girth, starting from
a random configuration, greedy behavior of players in a randaer converges to an approximate solution after one
round. We remark that this implies a combinatorial alganitivith sub-logarithmic approximation ratio, for graphs
of sufficiently large girth, while the best known approximatratio for the general problem @(logn) [3], and is
obtained using semidefinite programming.

2. Definitions and Preliminaries. In order to model the selfish behavior of players, we use teentition of
a state graph Each vertex in the state graph represengtrategy stateS = (s, s, - . ., $n), and corresponds to a
pure strategy profile (e.g an allocation for a congestioneyamm a cut for a cut game). The arcs in the state graph
correspond to best response moves by the players.

DEFINITION 2.1. Astate graptD = (V, £) is a directed graph, where each vertexircorresponds to a strategy
state. There is an arc from stafeto stateS’ with label; iff by letting player; play his best response in state the
resulting state isS”.

Observe that the state graph may contain loopsest responsevalk is a directed walk in the state graph. We
say that playet plays in the best response wdlk if at least one of the edges Bfhas label. Note that players play
their best responses sequentially, and not in paralleleiGasbest response walk starting from an arbitrary state, we
are interested in the social value of the last state on thie.\Wadtice that if we do not allow every player to make a best
response on a walR, then we cannot bound the social value of the final state wipect to the optimal solution. This
follows from the fact that the actions of a single player mawbry important for producing solutions of high social
value. Motivated by this simple observation, we introduce théofeing models that capture the intuitive notion of a
fair sequence of moves.

One-round walk: Consider an arbitrary ordering of all playeis. . ., i,,. A walk P of lengthn in the state graph is
aone-round walkf for eachj € [n], thejth edge ofP has label;.

Covering walk: A walk P in the state graph is eovering walkif for each playetri, there exists an edge &f with
labels.

k-Covering walk: A walk P in the state graph is A-covering walkif there arek covering walksPy, Pa, . .., Pk,
such thatP = (P1, Pz, ..., Pk).

Random walk: A walk P in the state graph is ndom walk if at each step the next player is chosen uniformly at
random.

Random one-round walk: Let o be an ordering of players picked uniformly at random fromghkeof all possible
orderings. Then, the one-round wakcorresponding to the orderirg is arandom one-round walk

Note that unless otherwise stated, all walks are assumedrofiom an arbitrary initial state. This model has
been used by Mirrokni and Vetta [14], in the context of extemgames with complete information.

Congestion gamesA congestion game is defined by a tugly, E, (S;)ien, (fe)ecr) Where N is a set of
players,E is a set of facilitiesS; € 2F is the pure strategy set for playera pure strategy; € S; for playeri is a
set of facilities, and. is a latency function for the facility depending on its load. We focus on linear delay functions
with nonnegative coefficient§,(z) = a.x + b..

LetS = (s1,...,8Nn) € X;enS; be a state (strategy profile) for a set'éfplayers. The cost of playéyin a state
Sisci(S) = s, fe(ne(S)) where byn.(S) we denote the number of players that use facility S. The objective
of a player is to minimize its own cost. We consider as a saaat of a state, the sum of the players’ costs and we

denote it byC'(S) = 3, oy ci(S) = X e g 1e(S) fe(ne(S)).

le.g. in the cut social function, most of the weight of the exdgkthe graph might be concentrated to the edges that areeadj a single
vertex.
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In weighted congestion games, playédras weighted demand,. By 6..(S), we denote the total load on a facility
e in a stateS. The cost of a player in a stateis ¢;(S) = >_ ., fe(0.(5)). We consider as a social cost of a state
S, the weighted sun’'(S) = > ..y wici(S) = D .cp 0e(S) fe (0 e( )). We will use subscripts to distinguish players
and superscripts to distinguish states.

Note that the selfish routing game is a special case of cangagames. Although we state all the results for
congestion games with linear latency functions, all of tesuits (including the lower and upper bounds) hold for
selfish routing games.

Cut Games..In a cut game, we are given an undirected gréffl, £'), with n vertices and edge weights :
E(G) — Q™. We will always assume thdt is connected, simple, and does not contain loops. For eah (G),
let deqv) be the degree of, and letAdj(v) be the set of neighbors of Let alsow, = 3_, cagj() Wuv- A CUtinG'is
a partition ofV (G) into two setsT" andT = V(G) — T, and is denoted byT’, T'). The value of a cut is the sum of
edges between the two sgtandT’, i.e >, 1 e Wuo-

Thecut gameon a graphG(V, E), is defined as follows: each vertexe V(G) is a player, and the strategy ofs
to chose one side of the cut, iecan chose, = —1 or s, = 1. A strategy profileS = (s1, s2, ..., s, ), corresponds
to a cut(T,T), whereT = {i|s; = 1}. The payoff of playew in a strategy profile5, denoted by, (5), is equal to
the contribution o in the cut, i.e.,(S) = 3=, ., wi,. It follows that the cut value is equal §3°, .\ o (S). If
S is clear from the context, we usg, instead ofw, (S) to denote the payoff of. We denote the maximum value of a
cutinG, by ¢(G). Thehappines®f a vertexv is equal toy S, . wiv — 3250, o Wio-

We consider two social functions: the cut value and the cluteveninus the value of the rest of the edges in the
graph. Itis easy to see that the cut value is half the sum gbalyeffs of vertices. The second social function is half
the sum of the happiness of vertices. We call the secondlganiztion, total happiness

3. Congestion Games.In this section, we focus on the convergence to approximaitgisns in congestion
games with linear latency functions. It is known [15, 18]ttaay best-response walk on the state graph leads to a pure
Nash equilibrium, and a pure equilibrium is a constantefaapproximate solution [1, 5, 4]. Unless otherwise stated,
we assume without loss of generality, that the players’'ondas1, ..., N.

3.1. Upper Bounds for One-round Walks. In this section, we bound the total delay after one round st be
responses of players. First, we prove that starting fronrlaitrary state, the solution after one round of best respens
is a®(NV)-approximate solution. We will also prove that startingnfran empty state, the approximation factor after
one round of best responses is a constant factor. This stawhie assumption about the initial state is critical for
this problem.

THEOREM 3.1. Starting from an arbitrary initial state5®, any one-round wallP leads to a states” that has
approximation ratioO(N).

Proof. Let X be the optimal allocation ansf’ = (s1',..., s, s?, ,, s%) an intermediate state.

Let m.(S?), k.(S*) be the number of the players that play strategies that quresto the final and of the
initial state respectively, using facilityin a stateS?, and M (S?), K (S?) the corresponding sums. Clearly(A?) =
me(AY) + ke (A%). It follows that:

K(S°) = =) k(S =3 ) (2acke(S7) = ac + be) (3.1)

ecE i€N ecs?

Since playet in stateS~! prefers strategy? thanx;, we get

Z fe(ne(S'1) + Z Qe < Z fe(ne(S™1) +1)

eesf\] 6655752 ecx;
For every intermediate staf, the social cost is

C(S)=CS" N+ > (2aenc(S™) +ac+be)+ > (ac—be — 2acne(S))
eesgis;’ ees?fsiv
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Summing over all intermediate states and using equalify) (8.e get

C(SN SO —|—Z Z (2aene( Gi—t )+ ae + be) —|—Z Z be—2aene(8i71))

ieEN e€s; —50 ieN ecs; 7SN

_Z Z 2aeneSZ 1)—|—ae+b —|—ZZ (2acke Sl 1)—ae+b)

ieN e€s; —s0 €N e€s

+Y 0> (e —be — 2acne(STY)

iEN eeso—sN

_Z Z (2aene(ST™Y) + ae + be) +Z Z (2acke(ST™1) — ae + be)

1EN eesN —s9 €N eesInsN
— Z Z 2a,mq(S71)
i€EN ees —s
<2> > fene(STY+2Y 0 D
i€EN eEsﬁV ieN eEst—s?
<Y 2fe(ne(STH +1)
1€N e€x;
<D ON 2f(N+1) = 2ne(X) fe(N + 1) = O(N)C(X)
iEN e€x; eceE

In the next section, we will show that the above bound is tighto a constant factor. As mentioned earlier, the
assumption about the initial state is critical for this desh. We will call a stateempty if no player is committed
to any of its strategies. Note that the one-round walk stgriiom an empty state is essentially equivalent to the
greedy algorithm for a generalized scheduling problem,revlaetask may be assigned into many machines. Suri et
al. [20, 21] address similar questions for the special cislkeocongestion games where the available strategies are
single sets. They give 208 lower bound and a7/3 upper bound. For the special case of identical facilitiegié

speed machines) they give an upper bouné‘fédf)—2 ~ 4.24. We generalize this result for our more general setting.
The following lemma will be used in the analysis.

LEMMA 3.2.For every pair of nonnegative integets 3 it holds

200+ 20 —a <

¢1 0 + (4 1),

where¢ = 1*—2\/5 is the golden ratio.

THEOREM3.3. Starting from the empty stat?, any one-round wal® leads to a stat&s”™ that has approxima-
tion ratio of at most”’*” ~ 4.24,

Proof. LetS? = (sIV,...,sN,,s)) be thei-th state ofP, after playeri, chooses its best response link. Let
X = (x1,...zy) be the optimal or any other allocation. In st&te !, playeri’s best response ig’ which leads to
stateS?. So we have:;(S?) < ¢;(S* !, ;) where(S*~1, ;) is the state produced if playéchose strategy;. This
finally gives

D aene(S7) <Y (aene(ST) +ac+be) = Y (ac +be) (3.2)
865?1 ecx; eesf\]
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Using inequality (3.2), we can bound the social cost of a@rinediate stat8? as follows:

C(5%) = 3 ne(8) . (ne(5)

ecE
= Y (ST (ST + D (ne(STH + D felne (ST +1)
eEEfsﬁv eesf\]
— C(Si_l) + Z (2aene(5’i_l) + ae +be)
eesfv
<O +2> (aene(ST) +ac+be) — > (e + be)
ecx; eEst

Summing up these inequalities for all intermediate state®r all i € NV and using Lemma 3.2, we get

C(SN) <C(S) +2) 0 (aeme(S™) +ac+be) = > > (ac+be)

1€N ecx; 1€EN e€s
<2ZZ aene(S™N) + ae + be) ZZ(ae—i—be)
i€EN e€x; i€EN eESN
—22116 Y(aene(SN) + ae + be) Zne )(ae + be)
eckE ecl
<D ac@ne(X)ne(SN) + 2ne(X) = ne(SV) + D be(2ne(X) — ne(SV))
eceE eckE
< Zae(¢i1ng(SN) 6+ Dne(X)2) + 3 be(2n0(X) = ne(SY))
eckE eeFE
1
< ?C(SN) + (o +1)C(X)

which finally givesC(S™) < @E0(X) ~ 4.240(X). 0

Now we turn our attention to weighted congestion games wiitbalr latency functions, where playéthas
weighted demand;. Fotakis et al. [9] showed that this game with linear latefurictions is a potential game.

THEOREM 3.4. In weighted congestion games with linear latency functistesting from the initial empty state
S0, any one-round wallP leads to a stateS™ that has approximation ratio of at mogt + v/3)? ~ 7.46.

Proof. Let S = (s¥V,...,sN |, sN) be thei-th state ofP, after player; chooses its best response link. Let
X = (x1,...7x) be the optimal allocation. In staf~!, playeri’s best response ig' and it leads to stat&’. Thus
we haver;(S%) < ¢; (S, x;) where(S*~1, z;) is the state produced if playechooses strategy;. This finally gives

Z (aeee(si_l) + AeW;j + be) S Z (aeee(si_l) + AeWj + be)

eEst ecx;

Multiplying both parts byw;, we get

D (@ebe (ST + acw; + be)wi <Y (acbe(ST) + acw; + be)w; (3.3)
e€s ecx;
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Using (3.3), we can bound the social cost of an intermedtate §° as follows:

=D 0e(S)fe(0(5"))
ecE
= D 0(STIL(O(ST) + D (Be(STT) + wi) fe(0(STT) + wi)
ecE— s eEsﬁV

=087 + Z(Zaet?e(Sifl)wi + acw? + bow;)
66377

S’Z 1 +2Z (ae 6S’Z 1 ) + acw; + be)w;

ecx;

Summing up these inequalities for all intermediate stadealf playersi € N and using Cauchy-Schwarz inequality,
we get:

csN) < (8 +2ZZ (aebe(S*™1) + acw; + be)w;

i€EN e€x;

<2) ) (ache(SN) + acw; + be)w;

1€EN e€x;

<2 el (SV)0(X) +2 > (ac02(X) + behe(X))

eclk ecE

<2 \/Z ac02(SN) > acb2(X) +20(X)

ecE ecE

< 24/C(SM)C(X) +2C(X)

After dividing by C(X) and settingr = ,/%, we getz? < 2x + 2, which givesC(S7V) < (1 +v3)?C(X) =~
7.46C(X).0

3.2. Lower Bounds. In this section, we give lower bounds for the approximatectdr of a state resulting after
a one-round deterministic best-response walk. The nexiréine shows that the result of theorem 3.1 is tight and
explains why it is necessary in the upper bounds given almwerisider walks starting from an empty allocation.

THEOREM3.5. For any N > 0, there exists atV-player instance of the unweighted congestion game, ailinit
stateS?, and a one-round walk that results to &{ N )-approximate solution.

Proof. Conside2N — 1 players an@N — 1 facilities. The strategy set for playeis S; = {{i},{N}},fori < N
andsS; = {{1,...N — 1}, {i}}, fori > N. Atthe initial allocationS°, each player plays his first strategy. For each
1€ {1,..., N}, at step, playeri selects his best response. During the one-round walk inhwhéclet playet, ... N
play their best response, all the playérs N will deviate to strategy NV} and the rest will deviate to stratedy}.
After one round, the cost of the allocationN& + N — 1 while the optimal allocation (where every player pldy})
has costN — 1.0

We next extend theorem 3.5 for the case-obvering walks, for > 1.

THEOREM 3.6. For anyt > 0, and for any sufficiently largév > 0, there exists anV-player instance of the
unweighted congestion game, an initial statg and an orderingr of the players, such that starting frof?, aftert
rounds v(v?ere the players play accordingdapthe cost of the resulting allocation is(&V/t)c-approximation, where
€ = 270 t

Proof. Letk > 0 be a sufficiently large integer. L& = | J,7; X; be a set of players whet¥; = {z;, 7}'X i1

Let P = /' P be a set of facilities wher®; = {p;;}/")"" Let|P0| = ng and for each e {1,...,¢ + 1}, let
|Xi| = |P;| = n; wheren; is a value to be determined Iater. The playersKirare ordered i so that player; ;
plays before playet; ;., iff i <, ori =4, andj < j'.

t+1



Each player has two strategies. The first strategy of playeis to play a single facility from the sd,_; while
her second strategy is to play facilities from the sef’;, wherea; will be specified later. Formally, the strategies of
playerz; ; are:

o {pifl,j mod n;_, }» @nd
L4 {pi,j mod n;sPi,j4+1 mod nsy -+ -y Pi,j+a;—1 mod n; } )

We setng = 1 and foreachi € {1,...,t+1}, we setn; = k° HJ 1 a; ¢t anda; = k2 ' —¢, wheree; = 2023,

It is straightforward to verify that for eacxhe {1,...,t+ 1}, k < n; < k%. Thus, the total number of players is

N = O(tk?).
We start by computing an upper bound for the cost of an optatiatation. Consider a staf# in which every
player plays its second strategy. It is easy to see thatsnaflocation, for each € {1,...,t + 1}, then; playersin

X, share uniformly the; facilities in P,. That is, each facility inP; is shared byy; players ofX;. Thus, each player
in X; paysa?, and the total cost is

t+1 t+1 i—1 t+1

S") _ Za?ni _ Zk2(2ﬂ‘_gi)ki H(kQ—j—ej )j i ZkQ 2¢; +Zt T(i—j)e;
i=1

i=1 j=1 i=1
Observe thake; > 272173 + Z;;ll (i — j)ej. Thus, we obtain

t+1 222?3 222t3
<Zk =(t+ 1)k

We will now compute the cost of the strategy profile resultifiger ¢ rounds, starting from a specific state. For
eachr € {0,...,t}, let S” be the state resulting afterrounds. In the initial stat&?, all the players play their first
strategy. We WI|| show inductively that ifi”, all the players |rU1t T X still play their first strategy.

The assertion is clearly true foer= 0. Assume now that the assertion holds for each »/, and consider the
roundr = 7. In the beginning of this round, the stated5~'. Consider a player; ;, withi < ¢t —r + 1. By the
induction hypothesis, in the beginning of roundeach player inX,;; plays its first strategy. Since each player in
Xi+1 plays after player; ;, it follows that this is also true whem; ; plays. This means that all the, players in
X,+1 share uniformly thes; facilities of P;. Since each player iiX;; plays a single facility in its first strategy, it
follows that each facility inP; is being shared by, 1 /n; players inX; .. Also, each player iX; plays in its second
strategyw; facilities in P;. Thus, the cost of the second strategy for playeris at Ieastxf”;’l—tl =kt

On the other hand, it follows by the inductive hypothesig #ikthe facilities inP;_; are shared only by players
in X;. Since each player ixX; plays a single facility inP;_1, it follows that each of the;_; facilities in P;_; is being
shared byn; /n; 1 players inX;. Thus, the cost of the first strategy of playey; is -~ = k:om12 =

Thus the cost of the second strategy is greater than the €dke dirst strategy This implies that for each
i <t —r+ 1, each player inX; plays her first strategy after the end roun@nd the inductive claim follows.

By the above argument it follows that afterounds, each player ix; plays her first strategy. That is, all of the
k players inX; share the single facility of%. It follows thatC(S*) > k2. Thus, the ratio between the cost.$f,
and the cost of an optimal allocation is at le@$t5*) /C(S") > k2~ ° /(t + 1). SinceN = (tk2), it follows that the
approximation ratio is at Iea(;N/t)To(”. O

Finally, we strengthen theorem 3.5 by showing that therératances for which the cost of the solution after any
arbitrary one-round walk is af(N)-approximate solution.

THEOREM 3.7. For any N > 0, there exists amV-player instance of the unweighted congestion game, and an
initial state S° such thafor anyone-round walkP starting fromS?, the state at the end f is anQ(N)-approximate
solution.

Proof.

Consider2N players an®N + 2 facilities {0,1,...2N + 1}. The available strategies for the first players are
{{0}, {i},{N +1,...,2N}} and for theN last{{2N + 1}, {i},{1,..., N}}. In the initial allocation, every player
plays its third strategy. Consider any order on the playedslat them begin to choose their best responses. It is easy
to see that in the first steps, the players would prefer thsirdtrategy. If this happens until the end of the round, the
resulting cost i$2(N?). Thus, we can assume that at some step(#he1)-th player from the sefl, ..., N} prefers
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his second strategy while all the previouplayers of the same set have chosen their first strategies.stitus of
the game at this step is as followsplayers of the first group play their first strategy,players of the second group
play their first strategy and the remaining players playrtiefial strategy. Since playet + 1 prefers his second
strategy, this means = N — m and so one of then, N is at leastN/2. The cost at the end will thus be at least
m? + k% + N = Q(N?). On the other hand, in the optimal allocation everybody slesdts second strategy which
gives costN. Thus, the approximation ratio §3(V). O

An interesting fact is that if a player doesn't have to chobisebest response strategy, but just a strategy that
improves his cost, then there always exist one-round whkkisresult to a constant approximation. To see that, assume
that in an optimal allocation, the strategy of each playés s;, and that the players know these strategies. Construct
an orderingr of the players as follows: Initiallyy is empty. At each step, augmenby adding a playef that does
not appear inr, and such that if playss; in the current allocation, he reduces his cost. Continug ghdocedure
until there are no such players, and f£be the resulting state. Observe thatSinevery player either playss;, or
prefers his current strategy than playisg By using techniques similar to those of subsection 3.1, aveliound the
approximation factor of the cost 6fby a constant. As a result, this one round of improvementsgwconstant-factor
approximate solution.

REMARK 1. It is not hard to modify the proofs of Theorems 3.5, 3.6,andt@hold for multi-commodity selfish
routing games. This can be done by defining a directed netwiahkmultiple sources and destinations and linear
latency functions on edges. Due to space limitations, weeléize details of the proof for the full version of the paper.

4. Cut Games: The Cut Social Function.

4.1. Fast Convergence on Random WalksFirst we prove positive results for the convergence to @ridiactor
approximate solutions with random walks. We show that theeeted value of the cut after a random one-round walk
is within a constant factor of the maximum cut.

THEOREM4.1. In weighted graphs, the expected value of the cut at the eadafidom one-round walk is at
least$ of the maximum cut.

Proof. It suffices to show that after a random one-round walk, fergv € V(G), E[a,] Z FWy.

Consider a vertex. The probability that occurs after exactly: of its neighbors i |SW After v moves,
the contribution ofv in the cut is at leasty-. Conditioning on the fact that occurs after exactly neighbors, for

each vertex: in the neighborhood of, the probability that it occurs afteris dCdg(”() 7 and only in this case can
decrease the contribution ofin the cut by at mostv,,,. Thus the expected contribution ofin the cut is at least
max(0, w, (L — LE"F))  Summing over all values of, we obtainE[a,] > Zdeg(v)

2 deg(v)
)
d‘jdge(g%’)k)) = Te(5TT Zk q I+ %&gﬂ(” > 2=, The result follows by the linearity of expectation.The next

theorem studies a random walk of best responses (not neigeasane-round walk).

THEOREM4.2. There exists a constant> 0 such that the expected value of the cut at the end of a randdkn wa
of lengthcn log n is a constant-factor of the maximum cut.

Proof. Let G(V, E) be a weighted graph, and 1& = x1,x9,...,2; be a sequence, where eachis chosen
uniformly at random fronV (G). There exists a constaatsuch that ifc = cnlogn, thenX contains each element
of V(G) with probability1 — % By the union bound, all vertices occur i with with probabilityl — —=. Thus, it
is sufficient to prove the assertion conditioning on the faat all vertices occur itX .

Assume now thafX contains all the elements &f(G), and for eachv € V(G) let t(v) be the largest, with
1 <1 < k, such thatr; = v. Consider now the subsequenké of X, such thatX’ contains only those elements,
such that = t(v), for somev € V(G). Itis easy to see thaX’ induces a random one-round walk. Observe that for
Ty(u), Te(vy € X', With t(u) < t(v), we know that after vertex plays, the contribution of in the cut that is due to the
edge{u, v} cannot change. Therefore, by applying the same argumentthe proof of Theorem 4.1, the assertion
follows.O

max(0, w, (5 —

1
deg(v)+1
d(,g(v

4.2. Poor Deterministic ConvergenceWe now give lower bounds for the convergence to approxintegiens
for the cut social function. First, we give a simple examplevihich we need at least(n) rounds of best responses
to converge to a constant-factor cut. The constructiomméses a result of Poljak [17].

THEOREM4.3. There exists a weighted gragh(V, E), with |V (G)| = n, and an ordering of vertices such that
for anyk > 0, the value of the cut aftek rounds of letting players play in this ordering is at ma@tk/n) of the
maximum cut.



(a) i is even. (b) ¢ is odd.

FIG. 4.1.The cut(T;, T;) along the walk of the proof of Theorem 4.4.

Proof. Consider a grapt¥(V; E), with V(G) = {1,2,...,n}, andE(G) = J'_1{{i,i + 1}}. For anyi, with
1 <i < n, the weight of the edgéi,i + 1},is1 + (i — 1)/n?. SinceG is bipartite, the value of the maximum cut of
Gisc(G) = 31 (1+ (i — 1)/n?) = Q(n).

Let o be an ordering of the vertices 6f, with o(i) = . Consider the execution of the one-round walk for the
orderingo. Initially, we havel’ = V(G). Itis easy to see that in any round 1, when vertexj plays, ifj <n—1,j
moves to the other part of the cut. Otherwisegj, it n — ¢, j remains in the same part of the cut. Thus, after roiynd
we have

T_{{n7n—27n—47...,n—i+1} if i is odd

{2, n—i—1)}U{n,n—-2,n—4,...,n—1} ifiiseven

It easily follows that the size of the cut afterounds according to the orderiagis Z?:_nl_k 1+ (i—1)/n% = O(k).
d

We next combine a modified version of the above constructitin avresult of Schaffer and Yannakakis for the
Max-Cut local search problem [22], to obtain an exponelyti@ing walk with poor cut value.

THEOREM4.4. There exists a weighted gragh(V, E), with |V (G)| = ©(n), and ak-covering walkP in the
state graph, for somé exponentially large im, such that the value of the cut at the endRafis at mostO(1/n) of
the optimum cut.

Proof. In [22], it is shown that there exists a weighted gra@h(V, E), and an initial cut(Ty, Tp), such that
the length ofanywalk in the state graph, frorily, Tp) to a pure strategy Nash equilibrium, is exponentially long.

Consider such a graph of sig&(n), with V(Go) = {vo,v1,...,vn}. Let Py be an exponentially long walk from
(Ty, Tp) to a Nash equilibrium in which we let vertices, v1, ..., vy play in this order for exponential an number
of rounds. LetSy, S1,...,S|p, be the sequence of states visited/Ryand lety; be the vertex that plays his best

response from stat§; to stateS,;. ;. The result of [22] guarantees that there exists a vertgxygawvhich wants to
change side (i.e. strategy) an exponential number of tifegahe walkP, (since otherwise we can find a small
walk to a pure Nash equilibrium). Leg = 0, and fori > 1, lett; be the time in whichy, changes side for thith
time along the walkP,. Fori > 1, let Q; be the sequence of verticgs_, 11, . . ., y:,. Observe that eacd, contains
all of the vertices inGy.

Consider now a grapfi, which consists of a path = 1, 2o, .. ., z,,, and a copy o&. Foreach € {1,...,n—

1}, the weight of the edgéx;, 2,11} is 1. We scale the weights ¢f, such that the total weight of the edges(&f

is less than 1. Finally, for eache {1,...,n}, we add the edgéz;, vy}, of weighte, for some sufficiently smah.
Intuitively, we can pick the value ef such that the moves made by the verticeSinare independent of the positions
of the vertices of the path in the current cut.

For each > 1, we consider an orderirig; of the vertices of_, as follows: Ifi is odd, therR; = x1, 22, ..., 2.,
and ifi is even, therR,;, = z,,, xp_1,...,21.

We are now ready to describe the exponentially long pathersthte graph. Assume w.l.0.g., that in the initial
cut for Gy, we havev, € Ty. The initial cut forG is (T, T), with T = {z;} U Ty, andT = {za,...,2,} U Tp. Itis
now straight-forward to verify that there exists an expdiadly large k, such that for any, with 1 < ¢ < k, if we let
the vertices of~ play according to the sequen€g, R, Q2, Ro, ..., Q;, R;, then we have (see Figure 4.1):

e If iis even, thedvg,z:} C T, and{zs,...,2,} C T.

e If iisodd, thenzy,..., 2, 1} C T,and{vo,z,} C T.
It follows that for each, with 1 < i < k, the size of the cut is at moét(1/n) times the value of the optimal cut. The
result follows since each walk in the state graph inducedbysequenc@; andR; is a covering walkl
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4.3. Mildly Greedy Players. By Theorem 4.1, it follows that for any graph, and startingnfran arbitrary cut,
there exists a walk of length at mastto anQ2(1)-approximate cut. On the other hand, Theorems 4.3 and 40 sh
that there are cases where a deterministic ordering of ayay result to very long walks that do not reach an
approximately good cut.

We observe that if we change the game by assuming that a wraeges side in the cut if his payoff is multiplied
by at least a factor + ¢, for a constant > 0, then the convergence is faster. We call such veriiteis ¢)-greedy In
the following, we prove that if all vertices afeé + ¢)-greedy for a constant> 0, then the value of the cut after any
one-round walk is within a constant factor of the optimum.

THEOREMA4.5. If all vertices are(1 + ¢)-greedy, then the cut value at the end of any one-round walitlisn a
min{ -5, 5.} factor of the optimal cut.

Proof. Consider a one-round walR. For each vertex, let o/, be the payoff ofv right after its occurrence in
P, and leta, be the payoff ofv at the end ofP. Let V; be the set of vertices that did not change their side in the
one-round walk andl; = V(G)\ V1. For avertex € Vs, letr, be the total weight of the edges that are removed from
the cut aften moves. Fora set' C V(G), letW(T) = 3_ ,cr wo. ThUS, Y, vy 0 = D pery o + Doyey, Qv =

D ovevy Yo T D ver, Yo = Dpery To 2 ﬁW(Vl) ;I:W(VQ) 2+EW(VQ) > mm{2+€, s tW(V(G)). Thus
the value of the cut after this one-round walk, is at leastia( - )-approximationd

4+42¢7 4+2€

4.4. Unweighted Graphs.In unweighted simple graphs, it is straight-forward to fyetiat the value of the cut
at the end of am?-covering walk is at Ieas% of the optimum. The following theorem shows that in unwegght
graphs, the value of the cut after aflyn)-covering walk is a constant-factor approximation.

THEOREM 4.6. For unweighted graphs, the value of the cut after(am)-covering walk is within a constant-
factor of the maximum cut.

Proof.

Consider ak-covering walkP = (P4,...,Px), where eachP; is a covering walk. Let\/, = 0, and for any
1 > 1, let M; be the size of the cut at the end®f. Note that if M, — M;_; > 'E(G)l ,forallz, with1 < i < k, then

clearly M, > k! I(On , and since the maximum size of a cut is at m&{G7)|, the Lemma follows.

It remains to consider the case where there exjststh 1 < ¢ < k, such thatM; — M;_; < “‘;(0 )| . LetV; be
the set of vertices that change their side in the cut on thk ®alandV; = V(G) \ V4. Observe that When a vertex

changes its side in the cut, the size of the cut increaseslbgsitl. Thus|V;| < 'E(G” , and since the degree of each

vertex is at most. — 1, it follows that the number of edges that are incident t0|vest|nV1, is less thaﬂﬂ

On the other hand, if a vertex of degréeemains in the same part of the cut, then exactly after |t5playleast
[d/2] of its adjacent edges are in the cut. Thus, at least half oédges that are incident to at least one vertekin
were in the cut, at some point during wélk. At most@ of these edges have an end-pointin and thus at most
that many of these edges may not appear in the cut at the éid dhus, the total number of edges that remain in the
cut at the end of wallP;, is at leastZ(G)— 'E(G)l/w ‘E( - 7|E(G)| . Since the maximum size of a cut is at most
|E(G)|, we obtain that at the end &;, the value of the cut is Wlthln a constant factor of the optimi

THEOREM 4.7. There exists an unweighted grapi{V, E'), with |V (G)| = n, and an ordering of the vertices
such that for any: > 0, the value of the cut aftér rounds of letting players play in this ordering is at méXk/+/n)
of the maximum cut. _

Proof. LetV(G) = Ui_, U\ {{vi;}}, andE(G) = U2 Ui—, U5 {{vij, vise1.}}. Clearly,G is bipartite,
and thus the maximum cut valeé) = |E(G)| = Q(t3) = Q(n 3/2).

Consider now the ordering, such that for any, j, with1 < j <i <, a(@ + j) = v; ;. By an argument
similar to the one used in the proof of Theorem 4.3, we obtaa afterk rounds of letting players play according to
the orderingr, the size of the cut is at moét(kt?) = O(kn). 0

5. The Total Happiness Social Function.In this section, we consider the total happiness at the eadarfidom
one-round walk starting from a random gufor unweighted graphs of large girth. Observe that thegpoicanarchy
is unbounded for this social functi&nAn alternative notion for the price of anarchy is the opstiti price of anarchy,

2A random cut is a cut that is chosen uniformly at random frorp@ssible cuts.

3To see that, consider an unweighted cycle of size foll7) = {v1,v2,v3,v4}, andE(G) = {{v1,v2}, {v2,v3}, {vs,va}, {va,v1}}.
LetTy = {v1,v2}, andT> = {v1,vs}. Note that(Ty, T} ) is a cut of total happiness 2, ad@l,, T%) is a Nash equilibrium of total happiness 0.
Thus, the price of anarchy %that is unbounded.
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or the price of stability, which is the best ratio betweendpémum and a Nash equilibrium. For a cut game with the
cut, or the total happiness social functions, it is easy éatlsat the price of stability is 4.

Note that the expected total happiness of a random cut is Zéres, a random cut is not an approximate solution
for this social function, even though it is éa-approximation for the cut social function. Here, we prokattin
unweighted graphs of large girth, starting from a random thigt total happiness of the cut after a random one-round
walk is an approximate solution. In fact, this gives a suipalithmic approximation algorithm for the total happiness
objective function for this class of graphs.

Let G(V, E) be an unweighted graph. For somie> 0, we call an edge o7, -good if at least one of its
end-points, has degree at méstlso, we call an edge af, J-bad if it is not §-good.

LEMMA 5.1. Let G(V, E), be a graph withE(G)| < k|V(G)|. Then, the number @Fgood edges of7, is at
least2t1=2kn,

Proof. Since|E(G)| < kn, the average degree 6f is at most2k. If we pick a vertexv € V(G), uniformly at

random, we haviPr(deg(v) < 6] = 1 — Pr[deg(v) > 6 + 1] > 1 — £& = 512k Thus, at least-25n vertices

have degree at moét Since the degree of each vertex is at least 1 (recall¥hatconnected), at Ieaégt%gkn edges
are adjacent to these vertices, and all of these edgésgoed.O

Consider the cufT, T), at the end of a random one-round walk. Letbe the total order on the elements of
V (@), defined by the random ordering of the vertices in the randoeiround walk. For each € E(G), let X, be
an indicator random variable, such thét = 1, if one end-point ok is in 7', and the other is ifT’, and X, = 0,
otherwise.

For a pairu,v € V(G), let€&, ., denote the event that there exists a gath x1, 2, ..., 2,, With u = z;, and
v = xp|, and for anyi, with 1 < i < [p[, z; < ;1.

LEMMA 5.2. Let{u, v}, {v,w} € E(G), such thaty < w < v. Then, for anyC’ > 0, there exists a constaft,
such that if the girth o is at leastC log_’ﬁ)”n, thenPr[€, ] <n .

Proof. Sincew < v, it follows that if tﬁe event,, ., happens, then there exists a pats x1, 72, . .., x|,, Which
does not visit, with u = x1, w = x|, andz; < 41, foranyi, with 1 <i < n.

Let g be the girth ofG. Consider the subgrapghi’ of G \ {v}, induced by the the vertices that are at distance at
mostg — 3 from v. Since the length of the shortest cycle®is at leasty, it follows thatG’ is a tree, and it does not
containw. LetP be the set of all paths that start framhave lengthy — 3, and do not visib. SinceG’ is a tree P
contains less than paths. Clearly, if a pathp that satisfies the above conditions exists, then there isteppaE P,

with p = ', ..., 2} _,, such that for any, with 1 < i < g — 2, z; < x;,,. Thus, for a sufficiently large constaft
the probability that such a path exists, is less thar(C lolgoign - 3)! <n= 9.0

LEMMA 5.3.Foranye € E(G), we havePr[X, = 1] > 1/2 — o(1).

Proof. Lete = {u, v}, and assume w.l.0.g., that< v. If u is the only neighbor of, that precedes, w.r.to <,
then clearlyPr[X. = 1] = 1.

Assume now that there exisi$ € V(G), v’ # u, with {v/,v} € E(G), andu’ < v. By Lemma 5.2, it follows
thatPr([&y . VEuw ] < 2/ncl. Observe that if none of the eveidis,,, and&,. , happens, then the choice of the part
of the cut that: belongs, is independent of the choice of the part thdtelongs. That is, the conditional probability
thatu andw’ are both inT", or T is 1/2.

Sincewv has at most neighbors, it follows that the probability that there existighbors.;, us of v, such that
Eur,up NAppens, is at mosk(1/n). Thus, with probability at least — O(1/n), none of these events happens. In this
case, the conditional probability th&t, = 1, is at leastl /2. It follows thatPr[X. = 1] > 1/2 — O(1/n).0

LEMMA 5.4.Lete = {u,v} € E(G), withu < v, anddeg(v) < 6. ThenPr[X, = 1] > 1/2 + Q(1/9).

Proof. By applying the same argument of the proof of Lemma 5.3, wainlthat the probability that there exists
neighborsu, us of v, such that,, ., happens, is at mos2(1/n). Thus, with probability at least — o(1), none of
these events happens.

Assume now that none of these events happens. For each aeightf v, letY,, be an indicator random variable,
such that, = 1, if w is in the same part of the cut with andY,, = 0, otherwise. Le¥” = > ., ,cp () Yu- Since
Pr[Y, = 1] =1, we obtainE[Y] = (d + 1)/2. We will consider two cases far.

Case 1:f ¢ is odd, we hav@®r[{u, v} iscul > Pr[Y > (6+1)/2] = Pr[Y = (6+1)/2]+Pr[Y > (6+1)/2].
Note thatPr[Y = (6§ 4+ 1)/2] = 2—5+1(‘§) = Q(1/V5). SincePr[Y > (6 +1)/2] = Pr[Y < (6 +1)/2], we

“4In general, the price of stability in potential games in whikie social function is a potential function for the gamesgsal to 1.
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obtainPr[{u, v} is cuf = 1/2 + Q(1/V3).

Case 2:If § is even, we hav®r[{u, v} is cuf = Pr[Y = §/2] + Pr[Y > §/2] = iPr[Y = §/2] + 5. Note
thatPr[Y = §/2] = 2=+ (3_}) = Q(1/V/3). Thus, we obtaiPr[{u, v} is cuf = 1/2 + Q(1/V6). O

THEOREM 5.5. For an2y unweighted simple graph of girth at leastog n, starting from a random cut, the
expected value of the happiness at the end of a random omelkealk, is within a constant factor from the maximum
happiness.

Proof. If G(V, E) is a graph of girth at leastlogn, then|E(G)| < 3n. Also, by Lemma 5.1, it follows that
there are at least, 8-good edges if7. By Lemma 5.3, it follows that the probability that @&ribad edge is cut, is
at leastl /2 — o(1), while by Lemma 5.4, the probability that &good edge is cut, is at leasf2 + Q(1). Thus,
the expectation of the total happiness after a random omedravalk isQ2(n). 0 We can similarly prove the following
Theorem.

THEOREM 5.6. There exists a constadt’, such that for anyC' > C’, and for any unweighted simple graph
of girth at IeastClolg‘.)lgogn, starting from a random cut, the expected value of the hasgsiat the end of a random
one-round walk, is within W factor of the maximum happiness.

Proof. We have|E(G)| < n + n!tVIstan] < p 4 p!tomstsen, and for sufficiently large, |E(G)| =
O(nlog'/“ n). Also, by Lemma 5.1, it follows that there are at lefh), log*/© n-good edges irZ. By Lemma
5.3, the probability that g’/ n-bad edge is cut, is at least2 — o(1), while by Lemma 5.4, the probability that a
1og1/C n-good edge is cut, is at leakt2 + Q(log_l/gc n). Thus, the expectation of the total happiness after arandom
one-round walk i2(n log ~'/2“ n). O

Note that the above theorem also gives a combinatorial agdérithmic approximation algorithm for the total
happiness problem in unweighted graphs of large girth. Astioeed before, this objective function is considered in
the context of correlation clustering problem [2] antba(n)-approximation is recently known for this function in
general graphs [3].
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